Optimization of solid oxide fuel cell cathodes using two-point correlation functions
نویسندگان
چکیده
منابع مشابه
Factors governing oxygen reduction in solid oxide fuel cell cathodes.
Recent worldwide interest in building a decentralized, hydrogen-based energy economy has refocused attention on the solid oxide fuel cell (SOFC) as a potential source of efficient, environmentally friendly, fuel-versatile electric power. Due to its high operating temperature, the SOFC offers several potential advantages over polymer-based fuel cells, including reversible electrode reactions, lo...
متن کاملA two-dimensional numerical model of a planar solid oxide fuel cell
A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...
متن کاملA new approach to microstructure optimization of solid oxide fuel cell electrodes
Designing optimal microstructures for solid oxide fuel cell (SOFC) electrodes is complicated due to the multitude of electro-chemo-physical phenomena taking place simultaneously that directly affect working conditions of a SOFC electrode and its performance. In this study, a new design paradigm is presented to obtain a balance between electrochemical sites in the form of triple phase boundary (...
متن کاملLattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell
In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...
متن کاملPhase field modeling of microstructure evolution of electrocatalyst-infiltrated solid oxide fuel cell cathodes
Articles you may be interested in Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes Redox instability, mechanical deformation, and heterogeneous damage accumulation in solid oxide fuel cell anodes J. Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells Appl. Synthesis and calorimetric studies of oxide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Materials Science
سال: 2016
ISSN: 0927-0256
DOI: 10.1016/j.commatsci.2016.07.004